Raising a dbt project is hard work. We, as data professionals, have poured ourselves into raising happy healthy data products, and we should be proud of the insights they’ve driven. It certainly wasn’t without its challenges though — we remember the terrible twos, where we worked hard to just get the platform to walk straight. We remember the angsty teenage years where tests kept failing, seemingly just to spite us. A lot of blood, sweat, and tears are shed in the service of clean data!
Once the project could dress and feed itself, we also worked hard to get buy-in from our colleagues who put their trust in our little project. Without deep trust and understanding of what we built, our colleagues who depend on your data (or even those involved in developing it with you — it takes a village after all!) are more likely to be in your DMs with questions than in their BI tools, generating insights.
When our teammates ask about where the data in their reports come from, how fresh it is, or about the right calculation for a metric, what a joy! This means they want to put what we’ve built to good use — the challenge is that, historically, it hasn’t been all that easy to answer these questions well. That has often meant a manual, painstaking process of cross checking run logs and your dbt documentation site to get the stakeholder the information they need.
Enter dbt Explorer! dbt Explorer centralizes documentation, lineage, and execution metadata to reduce the work required to ship trusted data products faster.